Peters, J., Schaal, S.
Reinforcement learning by reward-weighted regression for operational space control
In Proceedings of the 24th Annual International Conference on Machine Learning, pages: 745-750, ICML, 2007, clmc (inproceedings)
Peters, J., Theodorou, E., Schaal, S.
Policy gradient methods for machine learning
In Proceedings of the 14th INFORMS Conference of the Applied Probability Society, pages: 97-98, Eindhoven, Netherlands, July 9-11, 2007, 2007, clmc (inproceedings)
Peters, J., Schaal, S.
Policy Learning for Motor Skills
In Proceedings of 14th International Conference on Neural Information Processing (ICONIP), pages: 233-242, (Editors: Ishikawa, M. , K. Doya, H. Miyamoto, T. Yamakawa), 2007, clmc (inproceedings)
Peters, J., Schaal, S.
Reinforcement learning for operational space control
In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, pages: 2111-2116, IEEE Computer Society, ICRA, 2007, clmc (inproceedings)
Peters, J.
Relative Entropy Policy Search
CLMC Technical Report: TR-CLMC-2007-2, Computational Learning and Motor Control Lab, Los Angeles, CA, 2007, clmc (techreport)
Peters, J., Schaal, S.
Using reward-weighted regression for reinforcement learning of task space control
In Proceedings of the 2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning, pages: 262-267, Honolulu, Hawaii, April 1-5, 2007, 2007, clmc (inproceedings)
Riedmiller, M., Peters, J., Schaal, S.
Evaluation of Policy Gradient Methods and Variants on the Cart-Pole Benchmark
In Proceedings of the 2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning, pages: 254-261, ADPRL, 2007, clmc (inproceedings)
Smola, A., Mika, S., Schölkopf, B., Williamson, R.
Regularized principal manifolds
Journal of Machine Learning Research, 1, pages: 179-209, June 2001 (article)
Eichhorn, J.
Variationsverfahren zur Untersuchung von
Grundzustandseigenschaften des Ein-Band Hubbard-Modells
Biologische Kybernetik, Technische Universität Dresden, Dresden/Germany, May 2001 (diplomathesis)
Wichmann, F., Hill, N.
The psychometric function: II. Bootstrap-based confidence intervals and sampling
Perception and Psychophysics, 63 (8), pages: 1314-1329, 2001 (article)
Wichmann, F., Hill, N.
The psychometric function: I. Fitting, sampling and goodness-of-fit
Perception and Psychophysics, 63 (8), pages: 1293-1313, 2001 (article)
Seldin, Y., Bejerano, G., Tishby, N.
Unsupervised Segmentation and Classification of Mixtures of Markovian Sources
In The 33rd Symposium on the Interface of Computing Science and Statistics (Interface 2001 - Frontiers in Data Mining and Bioinformatics), pages: 1-15, 33rd Symposium on the Interface of Computing Science and Statistics (Interface - Frontiers in Data Mining and Bioinformatics), 2001 (inproceedings)
Bejerano, G., Seldin, Y., Margalit, H., Tishby, N.
Markovian domain fingerprinting: statistical segmentation of protein sequences
Bioinformatics, 17(10):927-934, 2001 (article)
Seldin, Y., Bejerano, G., Tishby, N.
Unsupervised Sequence Segmentation by a
Mixture of Switching Variable Memory Markov Sources
In In the proceeding of the 18th International Conference on Machine Learning (ICML 2001), pages: 513-520, 18th International Conference on Machine Learning (ICML), 2001 (inproceedings)
Buhmann, J., Schölkopf, B.
Inference Principles and Model Selection
(01301), Dagstuhl Seminar, 2001 (techreport)
Schölkopf, B., Burges, C., Vapnik, V.
Incorporating invariances in support vector learning machines
In Artificial Neural Networks: ICANN 96, LNCS vol. 1112, pages: 47-52, (Editors: C von der Malsburg and W von Seelen and JC Vorbrüggen and B Sendhoff), Springer, Berlin, Germany, 6th International Conference on Artificial Neural Networks, July 1996, volume 1112 of Lecture Notes in Computer Science
(inproceedings)