Header logo is ei


2010


no image
From Motor Learning to Interaction Learning in Robots

Sigaud, O., Peters, J.

pages: 538, Studies in Computational Intelligence ; 264, (Editors: O Sigaud, J Peters), Springer, Berlin, Germany, January 2010 (book)

Abstract
From an engineering standpoint, the increasing complexity of robotic systems and the increasing demand for more autonomously learning robots, has become essential. This book is largely based on the successful workshop "From motor to interaction learning in robots" held at the IEEE/RSJ International Conference on Intelligent Robot Systems. The major aim of the book is to give students interested the topics described above a chance to get started faster and researchers a helpful compandium.

Web DOI [BibTex]

2010

Web DOI [BibTex]


no image
Real-Time Local GP Model Learning

Nguyen-Tuong, D., Seeger, M., Peters, J.

In From Motor Learning to Interaction Learning in Robots, 264, pages: 193-207, Studies in Computational Intelligence, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)

Abstract
For many applications in robotics, accurate dynamics models are essential. However, in some applications, e.g., in model-based tracking control, precise dynamics models cannot be obtained analytically for sufficiently complex robot systems. In such cases, machine learning offers a promising alternative for approximating the robot dynamics using measured data. However, standard regression methods such as Gaussian process regression (GPR) suffer from high computational complexity which prevents their usage for large numbers of samples or online learning to date. In this paper, we propose an approximation to the standard GPR using local Gaussian processes models inspired by [Vijayakumar et al(2005)Vijayakumar, D’Souza, and Schaal, Snelson and Ghahramani(2007)]. Due to reduced computational cost, local Gaussian processes (LGP) can be applied for larger sample-sizes and online learning. Comparisons with other nonparametric regressions, e.g., standard GPR, support vector regression (SVR) and locally weighted proje ction regression (LWPR), show that LGP has high approximation accuracy while being sufficiently fast for real-time online learning.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Machine Learning Methods for Automatic Image Colorization

Charpiat, G., Bezrukov, I., Hofmann, M., Altun, Y., Schölkopf, B.

In Computational Photography: Methods and Applications, pages: 395-418, Digital Imaging and Computer Vision, (Editors: Lukac, R.), CRC Press, Boca Raton, FL, USA, 2010 (inbook)

Abstract
We aim to color greyscale images automatically, without any manual intervention. The color proposition could then be interactively corrected by user-provided color landmarks if necessary. Automatic colorization is nontrivial since there is usually no one-to-one correspondence between color and local texture. The contribution of our framework is that we deal directly with multimodality and estimate, for each pixel of the image to be colored, the probability distribution of all possible colors, instead of choosing the most probable color at the local level. We also predict the expected variation of color at each pixel, thus defining a non-uniform spatial coherency criterion. We then use graph cuts to maximize the probability of the whole colored image at the global level. We work in the L-a-b color space in order to approximate the human perception of distances between colors, and we use machine learning tools to extract as much information as possible from a dataset of colored examples. The resulting algorithm is fast, designed to be more robust to texture noise, and is above all able to deal with ambiguity, in contrary to previous approaches.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Finding Gene-Gene Interactions using Support Vector Machines

Rakitsch, B.

Eberhard Karls Universität Tübingen, Germany, 2010 (diplomathesis)

[BibTex]

[BibTex]


no image
Structural and Relational Data Mining for Systems Biology Applications

Georgii, E.

Eberhard Karls Universität Tübingen, Germany , 2010 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Population Coding in the Visual System: Statistical Methods and Theory

Macke, J.

Eberhard Karls Universität Tübingen, Germany, 2010 (phdthesis)

[BibTex]

[BibTex]


no image
Bayesian Methods for Neural Data Analysis

Gerwinn, S.

Eberhard Karls Universität Tübingen, Germany, 2010 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Clustering with Neighborhood Graphs

Maier, M.

Universität des Saarlandes, Saarbrücken, Germany, 2010 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Approaches Based on Support Vector Machine to Classification of Remote Sensing Data

Bruzzone, L., Persello, C.

In Handbook of Pattern Recognition and Computer Vision, pages: 329-352, (Editors: Chen, C.H.), ICP, London, UK, 2010 (inbook)

Abstract
This chapter presents an extensive and critical review on the use of kernel methods and in particular of support vector machines (SVMs) in the classification of remote-sensing (RS) data. The chapter recalls the mathematical formulation and the main theoretical concepts related to SVMs, and discusses the motivations at the basis of the use of SVMs in remote sensing. A review on the main applications of SVMs in classification of remote sensing is given, presenting a literature survey on the use of SVMs for the analysis of different kinds of RS images. In addition, the most recent methodological developments related to SVM-based classification techniques in RS are illustrated by focusing on semisupervised, domain adaptation, and context sensitive approaches. Finally, the most promising research directions on SVM in RS are identified and discussed.

Web [BibTex]

Web [BibTex]


no image
Detecting the mincut in sparse random graphs

Köhler, R.

Eberhard Karls Universität Tübingen, Germany, 2010 (diplomathesis)

[BibTex]

[BibTex]


no image
A wider view on encoding and decoding in the visual brain-computer interface speller system

Martens, S.

Eberhard Karls Universität Tübingen, Germany, 2010 (phdthesis)

[BibTex]

2002


no image
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond

Schölkopf, B., Smola, A.

pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)

Abstract
In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs-kernels—for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.

Web [BibTex]

2002

Web [BibTex]