Header logo is ei


2018


no image
Temporal Difference Models: Model-Free Deep RL for Model-Based Control

Pong*, V., Gu*, S., Dalal, M., Levine, S.

6th International Conference on Learning Representations (ICLR), May 2018, *equal contribution (conference)

link (url) Project Page [BibTex]

2018

link (url) Project Page [BibTex]


no image
Wasserstein Auto-Encoders: Latent Dimensionality and Random Encoders

Rubenstein, P. K., Schölkopf, B., Tolstikhin, I.

Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Leave no Trace: Learning to Reset for Safe and Autonomous Reinforcement Learning

Eysenbach, B., Gu, S., Ibarz, J., Levine, S.

6th International Conference on Learning Representations (ICLR), May 2018 (conference)

Videos link (url) Project Page [BibTex]

Videos link (url) Project Page [BibTex]


Thumb xl 2018 tgan
Tempered Adversarial Networks

Sajjadi, M. S. M., Parascandolo, G., Mehrjou, A., Schölkopf, B.

Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)

arXiv [BibTex]

arXiv [BibTex]


no image
Learning Coupled Forward-Inverse Models with Combined Prediction Errors

Koert, D., Maeda, G., Neumann, G., Peters, J.

IEEE International Conference on Robotics and Automation, (ICRA), pages: 2433-2439, IEEE, May 2018 (conference)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Learning Disentangled Representations with Wasserstein Auto-Encoders

Rubenstein, P. K., Schölkopf, B., Tolstikhin, I.

Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Automatic Estimation of Modulation Transfer Functions

Bauer, M., Volchkov, V., Hirsch, M., Schölkopf, B.

IEEE International Conference on Computational Photography (ICCP), May 2018 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Causal Discovery Using Proxy Variables

Rojas-Carulla, M., Baroni, M., Lopez-Paz, D.

Workshop at 6th International Conference on Learning Representations (ICLR), May 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Sample and Feedback Efficient Hierarchical Reinforcement Learning from Human Preferences

Pinsler, R., Akrour, R., Osa, T., Peters, J., Neumann, G.

IEEE International Conference on Robotics and Automation, (ICRA), pages: 596-601, IEEE, May 2018 (conference)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Group invariance principles for causal generative models

Besserve, M., Shajarisales, N., Schölkopf, B., Janzing, D.

Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), 84, pages: 557-565, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Boosting Variational Inference: an Optimization Perspective

Locatello, F., Khanna, R., Ghosh, J., Rätsch, G.

Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), 84, pages: 464-472, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


no image
Cause-Effect Inference by Comparing Regression Errors

Blöbaum, P., Janzing, D., Washio, T., Shimizu, S., Schölkopf, B.

Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS) , 84, pages: 900-909, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Will People Like Your Image? Learning the Aesthetic Space

Schwarz, K., Wieschollek, P., Lensch, H. P. A.

2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pages: 2048-2057, March 2018 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Leveraging the Crowd to Detect and Reduce the Spread of Fake News and Misinformation

Kim, J., Tabibian, B., Oh, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the 11th ACM International Conference on Web Search and Data Mining (WSDM), pages: 324-332, (Editors: Yi Chang, Chengxiang Zhai, Yan Liu, and Yoelle Maarek), ACM, Febuary 2018 (conference)

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


no image
Functional Programming for Modular Bayesian Inference

Ścibior, A., Kammar, O., Ghahramani, Z.

Proceedings of the ACM on Functional Programming (ICFP), 2(Article No. 83):1-29, ACM, 2018 (conference)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Automatic Bayesian Density Analysis

Vergari, A., Molina, A., Peharz, R., Ghahramani, Z., Kersting, K., Valera, I.

2018 (conference) Submitted

arXiv [BibTex]

arXiv [BibTex]


no image
k–SVRG: Variance Reduction for Large Scale Optimization

Raj, A., Stich, S.

In 2018 (inproceedings) Submitted

[BibTex]

[BibTex]


no image
Probabilistic Deep Learning using Random Sum-Product Networks

Peharz, R., Vergari, A., Stelzner, K., Molina, A., Trapp, M., Kersting, K., Ghahramani, Z.

2018 (conference) Submitted

arXiv [BibTex]

arXiv [BibTex]


no image
A Differentially Private Kernel Two-Sample Test

Raj*, A., Law*, L., Sejdinovic*, D., Park, M.

2018, *equal contribution (conference) Submitted

[BibTex]

[BibTex]


no image
Denotational Validation of Higher-order Bayesian Inference

Ścibior, A., Kammar, O., Vákár, M., Staton, S., Yang, H., Cai, Y., Ostermann, K., Moss, S. K., Heunen, C., Ghahramani, Z.

Proceedings of the ACM on Principles of Programming Languages (POPL), 2(Article No. 60):1-29, ACM, 2018 (conference)

DOI Project Page [BibTex]

DOI Project Page [BibTex]

2006


no image
Conformal Multi-Instance Kernels

Blaschko, M., Hofmann, T.

In NIPS 2006 Workshop on Learning to Compare Examples, pages: 1-6, NIPS Workshop on Learning to Compare Examples, December 2006 (inproceedings)

Abstract
In the multiple instance learning setting, each observation is a bag of feature vectors of which one or more vectors indicates membership in a class. The primary task is to identify if any vectors in the bag indicate class membership while ignoring vectors that do not. We describe here a kernel-based technique that defines a parametric family of kernels via conformal transformations and jointly learns a discriminant function over bags together with the optimal parameter settings of the kernel. Learning a conformal transformation effectively amounts to weighting regions in the feature space according to their contribution to classification accuracy; regions that are discriminative will be weighted higher than regions that are not. This allows the classifier to focus on regions contributing to classification accuracy while ignoring regions that correspond to vectors found both in positive and in negative bags. We show how parameters of this transformation can be learned for support vector machines by posing the problem as a multiple kernel learning problem. The resulting multiple instance classifier gives competitive accuracy for several multi-instance benchmark datasets from different domains.

PDF Web [BibTex]

2006

PDF Web [BibTex]


no image
Adapting Spatial Filter Methods for Nonstationary BCIs

Tomioka, R., Hill, J., Blankertz, B., Aihara, K.

In IBIS 2006, pages: 65-70, 2006 Workshop on Information-Based Induction Sciences, November 2006 (inproceedings)

Abstract
A major challenge in applying machine learning methods to Brain-Computer Interfaces (BCIs) is to overcome the possible nonstationarity in the data from the datablock the method is trained on and that the method is applied to. Assuming the joint distributions of the whitened signal and the class label to be identical in two blocks, where the whitening is done in each block independently, we propose a simple adaptation formula that is applicable to a broad class of spatial filtering methods including ICA, CSP, and logistic regression classifiers. We characterize the class of linear transformations for which the above assumption holds. Experimental results on 60 BCI datasets show improved classification accuracy compared to (a) fixed spatial filter approach (no adaptation) and (b) fixed spatial pattern approach (proposed by Hill et al., 2006 [1]).

PDF [BibTex]

PDF [BibTex]


no image
A Linear Programming Approach for Molecular QSAR analysis

Saigo, H., Kadowaki, T., Tsuda, K.

In MLG 2006, pages: 85-96, (Editors: Gärtner, T. , G. C. Garriga, T. Meinl), International Workshop on Mining and Learning with Graphs, September 2006, Best Paper Award (inproceedings)

Abstract
Small molecules in chemistry can be represented as graphs. In a quantitative structure-activity relationship (QSAR) analysis, the central task is to find a regression function that predicts the activity of the molecule in high accuracy. Setting a QSAR as a primal target, we propose a new linear programming approach to the graph-based regression problem. Our method extends the graph classification algorithm by Kudo et al. (NIPS 2004), which is a combination of boosting and graph mining. Instead of sequential multiplicative updates, we employ the linear programming boosting (LP) for regression. The LP approach allows to include inequality constraints for the parameter vector, which turns out to be particularly useful in QSAR tasks where activity values are sometimes unavailable. Furthermore, the efficiency is improved significantly by employing multiple pricing.

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Incremental Aspect Models for Mining Document Streams

Surendran, A., Sra, S.

In PKDD 2006, pages: 633-640, (Editors: Fürnkranz, J. , T. Scheffer, M. Spiliopoulou), Springer, Berlin, Germany, 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, September 2006 (inproceedings)

Abstract
In this paper we introduce a novel approach for incrementally building aspect models, and use it to dynamically discover underlying themes from document streams. Using the new approach we present an application which we call “query-line tracking” i.e., we automatically discover and summarize different themes or stories that appear over time, and that relate to a particular query. We present evaluation on news corpora to demonstrate the strength of our method for both query-line tracking, online indexing and clustering.

Web DOI [BibTex]

Web DOI [BibTex]


no image
PALMA: Perfect Alignments using Large Margin Algorithms

Rätsch, G., Hepp, B., Schulze, U., Ong, C.

In GCB 2006, pages: 104-113, (Editors: Huson, D. , O. Kohlbacher, A. Lupas, K. Nieselt, A. Zell), Gesellschaft für Informatik, Bonn, Germany, German Conference on Bioinformatics, September 2006 (inproceedings)

Abstract
Despite many years of research on how to properly align sequences in the presence of sequencing errors, alternative splicing and micro-exons, the correct alignment of mRNA sequences to genomic DNA is still a challenging task. We present a novel approach based on large margin learning that combines kernel based splice site predictions with common sequence alignment techniques. By solving a convex optimization problem, our algorithm -- called PALMA -- tunes the parameters of the model such that the true alignment scores higher than all other alignments. In an experimental study on the alignments of mRNAs containing artificially generated micro-exons, we show that our algorithm drastically outperforms all other methods: It perfectly aligns all 4358 sequences on an hold-out set, while the best other method misaligns at least 90 of them. Moreover, our algorithm is very robust against noise in the query sequence: when deleting, inserting, or mutating up to 50% of the query sequence, it still aligns 95% of all sequences correctly, while other methods achieve less than 36% accuracy. For datasets, additional results and a stand-alone alignment tool see http://www.fml.mpg.de/raetsch/projects/palma.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Graph Based Semi-Supervised Learning with Sharper Edges

Shin, H., Hill, N., Rätsch, G.

In ECML 2006, pages: 401-412, (Editors: Fürnkranz, J. , T. Scheffer, M. Spiliopoulou), Springer, Berlin, Germany, 17th European Conference on Machine Learning (ECML), September 2006 (inproceedings)

Abstract
In many graph-based semi-supervised learning algorithms, edge weights are assumed to be fixed and determined by the data points‘ (often symmetric)relationships in input space, without considering directionality. However, relationships may be more informative in one direction (e.g. from labelled to unlabelled) than in the reverse direction, and some relationships (e.g. strong weights between oppositely labelled points) are unhelpful in either direction. Undesirable edges may reduce the amount of influence an informative point can propagate to its neighbours -- the point and its outgoing edges have been ``blunted.‘‘ We present an approach to ``sharpening‘‘ in which weights are adjusted to meet an optimization criterion wherever they are directed towards labelled points. This principle can be applied to a wide variety of algorithms. In the current paper, we present one ad hoc solution satisfying the principle, in order to show that it can improve performance on a number of publicly available benchmark data sets.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Semi-Supervised Learning

Chapelle, O., Schölkopf, B., Zien, A.

pages: 508, Adaptive computation and machine learning, MIT Press, Cambridge, MA, USA, September 2006 (book)

Abstract
In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research. Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.

Web [BibTex]

Web [BibTex]


no image
Finite-Horizon Optimal State-Feedback Control of Nonlinear Stochastic Systems Based on a Minimum Principle

Deisenroth, MP., Ohtsuka, T., Weissel, F., Brunn, D., Hanebeck, UD.

In MFI 2006, pages: 371-376, (Editors: Hanebeck, U. D.), IEEE Service Center, Piscataway, NJ, USA, 6th IEEE International Conference on Multisensor Fusion and Integration, September 2006 (inproceedings)

Abstract
In this paper, an approach to the finite-horizon optimal state-feedback control problem of nonlinear, stochastic, discrete-time systems is presented. Starting from the dynamic programming equation, the value function will be approximated by means of Taylor series expansion up to second-order derivatives. Moreover, the problem will be reformulated, such that a minimum principle can be applied to the stochastic problem. Employing this minimum principle, the optimal control problem can be rewritten as a two-point boundary-value problem to be solved at each time step of a shrinking horizon. To avoid numerical problems, the two-point boundary-value problem will be solved by means of a continuation method. Thus, the curse of dimensionality of dynamic programming is avoided, and good candidates for the optimal state-feedback controls are obtained. The proposed approach will be evaluated by means of a scalar example system.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Uniform Convergence of Adaptive Graph-Based Regularization

Hein, M.

In COLT 2006, pages: 50-64, (Editors: Lugosi, G. , H.-U. Simon), Springer, Berlin, Germany, 19th Annual Conference on Learning Theory, September 2006 (inproceedings)

Abstract
The regularization functional induced by the graph Laplacian of a random neighborhood graph based on the data is adaptive in two ways. First it adapts to an underlying manifold structure and second to the density of the data-generating probability measure. We identify in this paper the limit of the regularizer and show uniform convergence over the space of Hoelder functions. As an intermediate step we derive upper bounds on the covering numbers of Hoelder functions on compact Riemannian manifolds, which are of independent interest for the theoretical analysis of manifold-based learning methods.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Regularised CSP for Sensor Selection in BCI

Farquhar, J., Hill, N., Lal, T., Schölkopf, B.

In Proceedings of the 3rd International Brain-Computer Interface Workshop and Training Course 2006, pages: 14-15, (Editors: GR Müller-Putz and C Brunner and R Leeb and R Scherer and A Schlögl and S Wriessnegger and G Pfurtscheller), Verlag der Technischen Universität Graz, Graz, Austria, 3rd International Brain-Computer Interface Workshop and Training Course, September 2006 (inproceedings)

Abstract
The Common Spatial Pattern (CSP) algorithm is a highly successful method for efficiently calculating spatial filters for brain signal classification. Spatial filtering can improve classification performance considerably, but demands that a large number of electrodes be mounted, which is inconvenient in day-to-day BCI usage. The CSP algorithm is also known for its tendency to overfit, i.e. to learn the noise in the training set rather than the signal. Both problems motivate an approach in which spatial filters are sparsified. We briefly sketch a reformulation of the problem which allows us to do this, using 1-norm regularisation. Focusing on the electrode selection issue, we present preliminary results on EEG data sets that suggest that effective spatial filters may be computed with as few as 10--20 electrodes, hence offering the potential to simplify the practical realisation of BCI systems significantly.

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Time-Dependent Demixing of Task-Relevant EEG Signals

Hill, N., Farquhar, J., Lal, T., Schölkopf, B.

In Proceedings of the 3rd International Brain-Computer Interface Workshop and Training Course 2006, pages: 20-21, (Editors: GR Müller-Putz and C Brunner and R Leeb and R Scherer and A Schlögl and S Wriessnegger and G Pfurtscheller), Verlag der Technischen Universität Graz, Graz, Austria, 3rd International Brain-Computer Interface Workshop and Training Course, September 2006 (inproceedings)

Abstract
Given a spatial filtering algorithm that has allowed us to identify task-relevant EEG sources, we present a simple approach for monitoring the activity of these sources while remaining relatively robust to changes in other (task-irrelevant) brain activity. The idea is to keep spatial *patterns* fixed rather than spatial filters, when transferring from training to test sessions or from one time window to another. We show that a fixed spatial pattern (FSP) approach, using a moving-window estimate of signal covariances, can be more robust to non-stationarity than a fixed spatial filter (FSF) approach.

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
A Sober Look at Clustering Stability

Ben-David, S., von Luxburg, U., Pal, D.

In COLT 2006, pages: 5-19, (Editors: Lugosi, G. , H.-U. Simon), Springer, Berlin, Germany, 19th Annual Conference on Learning Theory, September 2006 (inproceedings)

Abstract
Stability is a common tool to verify the validity of sample based algorithms. In clustering it is widely used to tune the parameters of the algorithm, such as the number k of clusters. In spite of the popularity of stability in practical applications, there has been very little theoretical analysis of this notion. In this paper we provide a formal definition of stability and analyze some of its basic properties. Quite surprisingly, the conclusion of our analysis is that for large sample size, stability is fully determined by the behavior of the objective function which the clustering algorithm is aiming to minimize. If the objective function has a unique global minimizer, the algorithm is stable, otherwise it is unstable. In particular we conclude that stability is not a well-suited tool to determine the number of clusters - it is determined by the symmetries of the data which may be unrelated to clustering parameters. We prove our results for center-based clusterings and for spectral clustering, and support our conclusions by many examples in which the behavior of stability is counter-intuitive.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Information Marginalization on Subgraphs

Huang, J., Zhu, T., Rereiner, R., Zhou, D., Schuurmans, D.

In ECML/PKDD 2006, pages: 199-210, (Editors: Fürnkranz, J. , T. Scheffer, M. Spiliopoulou), Springer, Berlin, Germany, 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, September 2006 (inproceedings)

Abstract
Real-world data often involves objects that exhibit multiple relationships; for example, ‘papers’ and ‘authors’ exhibit both paper-author interactions and paper-paper citation relationships. A typical learning problem requires one to make inferences about a subclass of objects (e.g. ‘papers’), while using the remaining objects and relations to provide relevant information. We present a simple, unified mechanism for incorporating information from multiple object types and relations when learning on a targeted subset. In this scheme, all sources of relevant information are marginalized onto the target subclass via random walks. We show that marginalized random walks can be used as a general technique for combining multiple sources of information in relational data. With this approach, we formulate new algorithms for transduction and ranking in relational data, and quantify the performance of new schemes on real world data—achieving good results in many problems.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Bayesian Active Learning for Sensitivity Analysis

Pfingsten, T.

In ECML 2006, pages: 353-364, (Editors: Fürnkranz, J. , T. Scheffer, M. Spiliopoulou), Springer, Berlin, Germany, 17th European Conference on Machine Learning, September 2006 (inproceedings)

Abstract
Designs of micro electro-mechanical devices need to be robust against fluctuations in mass production. Computer experiments with tens of parameters are used to explore the behavior of the system, and to compute sensitivity measures as expectations over the input distribution. Monte Carlo methods are a simple approach to estimate these integrals, but they are infeasible when the models are computationally expensive. Using a Gaussian processes prior, expensive simulation runs can be saved. This Bayesian quadrature allows for an active selection of inputs where the simulation promises to be most valuable, and the number of simulation runs can be reduced further. We present an active learning scheme for sensitivity analysis which is rigorously derived from the corresponding Bayesian expected loss. On three fully featured, high dimensional physical models of electro-mechanical sensors, we show that the learning rate in the active learning scheme is significantly better than for passive learning.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Supervised Probabilistic Principal Component Analysis

Yu, S., Yu, K., Tresp, V., Kriegel, H., Wu, M.

In KDD 2006, pages: 464-473, (Editors: Ungar, L. ), ACM Press, New York, NY, USA, 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2006 (inproceedings)

Abstract
Principal component analysis (PCA) has been extensively applied in data mining, pattern recognition and information retrieval for unsupervised dimensionality reduction. When labels of data are available, e.g.,~in a classification or regression task, PCA is however not able to use this information. The problem is more interesting if only part of the input data are labeled, i.e.,~in a semi-supervised setting. In this paper we propose a supervised PCA model called SPPCA and a semi-supervised PCA model called S$^2$PPCA, both of which are extensions of a probabilistic PCA model. The proposed models are able to incorporate the label information into the projection phase, and can naturally handle multiple outputs (i.e.,~in multi-task learning problems). We derive an efficient EM learning algorithm for both models, and also provide theoretical justifications of the model behaviors. SPPCA and S$^2$PPCA are compared with other supervised projection methods on various learning tasks, and show not only promising performance but also good scalability.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Continuation Method for Semi-Supervised SVMs

Chapelle, O., Chi, M., Zien, A.

In ICML 2006, pages: 185-192, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
Semi-Supervised Support Vector Machines (S3VMs) are an appealing method for using unlabeled data in classification: their objective function favors decision boundaries which do not cut clusters. However their main problem is that the optimization problem is non-convex and has many local minima, which often results in suboptimal performances. In this paper we propose to use a global optimization technique known as continuation to alleviate this problem. Compared to other algorithms minimizing the same objective function, our continuation method often leads to lower test errors.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Trading Convexity for Scalability

Collobert, R., Sinz, F., Weston, J., Bottou, L.

In ICML 2006, pages: 201-208, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
Convex learning algorithms, such as Support Vector Machines (SVMs), are often seen as highly desirable because they offer strong practical properties and are amenable to theoretical analysis. However, in this work we show how non-convexity can provide scalability advantages over convexity. We show how concave-convex programming can be applied to produce (i) faster SVMs where training errors are no longer support vectors, and (ii) much faster Transductive SVMs.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Personalized handwriting recognition via biased regularization

Kienzle, W., Chellapilla, K.

In ICML 2006, pages: 457-464, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
We present a new approach to personalized handwriting recognition. The problem, also known as writer adaptation, consists of converting a generic (user-independent) recognizer into a personalized (user-dependent) one, which has an improved recognition rate for a particular user. The adaptation step usually involves user-specific samples, which leads to the fundamental question of how to fuse this new information with that captured by the generic recognizer. We propose adapting the recognizer by minimizing a regularized risk functional (a modified SVM) where the prior knowledge from the generic recognizer enters through a modified regularization term. The result is a simple personalization framework with very good practical properties. Experiments on a 100 class real-world data set show that the number of errors can be reduced by over 40% with as few as five user samples per character.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Deterministic annealing for semi-supervised kernel machines

Sindhwani, V., Keerthi, S., Chapelle, O.

In ICML 2006, pages: 841-848, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
An intuitive approach to utilizing unlabeled data in kernel-based classification algorithms is to simply treat the unknown labels as additional optimization variables. For margin-based loss functions, one can view this approach as attempting to learn low-density separators. However, this is a hard optimization problem to solve in typical semi-supervised settings where unlabeled data is abundant. The popular Transductive SVM algorithm is a label-switching-retraining procedure that is known to be susceptible to local minima. In this paper, we present a global optimization framework for semi-supervised Kernel machines where an easier problem is parametrically deformed to the original hard problem and minimizers are smoothly tracked. Our approach is motivated from deterministic annealing techniques and involves a sequence of convex optimization problems that are exactly and efficiently solved. We present empirical results on several synthetic and real world datasets that demonstrate the effectiveness of our approach.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Clustering Graphs by Weighted Substructure Mining

Tsuda, K., Kudo, T.

In ICML 2006, pages: 953-960, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
Graph data is getting increasingly popular in, e.g., bioinformatics and text processing. A main difficulty of graph data processing lies in the intrinsic high dimensionality of graphs, namely, when a graph is represented as a binary feature vector of indicators of all possible subgraphs, the dimensionality gets too large for usual statistical methods. We propose an efficient method for learning a binomial mixture model in this feature space. Combining the $ell_1$ regularizer and the data structure called DFS code tree, the MAP estimate of non-zero parameters are computed efficiently by means of the EM algorithm. Our method is applied to the clustering of RNA graphs, and is compared favorably with graph kernels and the spectral graph distance.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Choice Model with Infinitely Many Latent Features

Görür, D., Jäkel, F., Rasmussen, C.

In ICML 2006, pages: 361-368, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
Elimination by aspects (EBA) is a probabilistic choice model describing how humans decide between several options. The options from which the choice is made are characterized by binary features and associated weights. For instance, when choosing which mobile phone to buy the features to consider may be: long lasting battery, color screen, etc. Existing methods for inferring the parameters of the model assume pre-specified features. However, the features that lead to the observed choices are not always known. Here, we present a non-parametric Bayesian model to infer the features of the options and the corresponding weights from choice data. We use the Indian buffet process (IBP) as a prior over the features. Inference using Markov chain Monte Carlo (MCMC) in conjugate IBP models has been previously described. The main contribution of this paper is an MCMC algorithm for the EBA model that can also be used in inference for other non-conjugate IBP models---this may broaden the use of IBP priors considerably.

PostScript PDF Web DOI [BibTex]

PostScript PDF Web DOI [BibTex]


no image
Learning High-Order MRF Priors of Color Images

McAuley, J., Caetano, T., Smola, A., Franz, MO.

In ICML 2006, pages: 617-624, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
In this paper, we use large neighborhood Markov random fields to learn rich prior models of color images. Our approach extends the monochromatic Fields of Experts model (Roth and Blackwell, 2005) to color images. In the Fields of Experts model, the curse of dimensionality due to very large clique sizes is circumvented by parameterizing the potential functions according to a product of experts. We introduce several simplifications of the original approach by Roth and Black which allow us to cope with the increased clique size (typically 3x3x3 or 5x5x3 pixels) of color images. Experimental results are presented for image denoising which evidence improvements over state-of-the-art monochromatic image priors.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Inference with the Universum

Weston, J., Collobert, R., Sinz, F., Bottou, L., Vapnik, V.

In ICML 2006, pages: 1009-1016, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
WIn this paper we study a new framework introduced by Vapnik (1998) and Vapnik (2006) that is an alternative capacity concept to the large margin approach. In the particular case of binary classification, we are given a set of labeled examples, and a collection of "non-examples" that do not belong to either class of interest. This collection, called the Universum, allows one to encode prior knowledge by representing meaningful concepts in the same domain as the problem at hand. We describe an algorithm to leverage the Universum by maximizing the number of observed contradictions, and show experimentally that this approach delivers accuracy improvements over using labeled data alone.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Statistical Convergence of Kernel CCA

Fukumizu, K., Bach, F., Gretton, A.

In Advances in neural information processing systems 18, pages: 387-394, (Editors: Weiss, Y. , B. Schölkopf, J. Platt), MIT Press, Cambridge, MA, USA, Nineteenth Annual Conference on Neural Information Processing Systems (NIPS), May 2006 (inproceedings)

Abstract
While kernel canonical correlation analysis (kernel CCA) has been applied in many problems, the asymptotic convergence of the functions estimated from a finite sample to the true functions has not yet been established. This paper gives a rigorous proof of the statistical convergence of kernel CCA and a related method (NOCCO), which provides a theoretical justification for these methods. The result also gives a sufficient condition on the decay of the regularization coefficient in the methods to ensure convergence.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Products of "Edge-perts"

Gehler, PV., Welling, M.

In Advances in neural information processing systems 18, pages: 419-426, (Editors: Weiss, Y. , B. Schölkopf, J. Platt), MIT Press, Cambridge, MA, USA, Nineteenth Annual Conference on Neural Information Processing Systems (NIPS), May 2006 (inproceedings)

Abstract
Images represent an important and abundant source of data. Understanding their statistical structure has important applications such as image compression and restoration. In this paper we propose a particular kind of probabilistic model, dubbed the “products of edge-perts model” to describe the structure of wavelet transformed images. We develop a practical denoising algorithm based on a single edge-pert and show state-ofthe-art denoising performance on benchmark images.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Assessing Approximations for Gaussian Process Classification

Kuss, M., Rasmussen, C.

In Advances in neural information processing systems 18, pages: 699-706, (Editors: Weiss, Y. , B. Schölkopf, J. Platt), MIT Press, Cambridge, MA, USA, Nineteenth Annual Conference on Neural Information Processing Systems (NIPS), May 2006 (inproceedings)

Abstract
Gaussian processes are attractive models for probabilistic classification but unfortunately exact inference is analytically intractable. We compare Laplace‘s method and Expectation Propagation (EP) focusing on marginal likelihood estimates and predictive performance. We explain theoretically and corroborate empirically that EP is superior to Laplace. We also compare to a sophisticated MCMC scheme and show that EP is surprisingly accurate.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning an Interest Operator from Human Eye Movements

Kienzle, W., Wichmann, F., Schölkopf, B., Franz, M.

In CVPWR 2006, pages: page 24, (Editors: C Schmid and S Soatto and C Tomasi), IEEE Computer Society, Los Alamitos, CA, USA, 2006 Conference on Computer Vision and Pattern Recognition Workshop, April 2006 (inproceedings)

Abstract
We present an approach for designing interest operators that are based on human eye movement statistics. In contrast to existing methods which use hand-crafted saliency measures, we use machine learning methods to infer an interest operator directly from eye movement data. That way, the operator provides a measure of biologically plausible interestingness. We describe the data collection, training, and evaluation process, and show that our learned saliency measure significantly accounts for human eye movements. Furthermore, we illustrate connections to existing interest operators, and present a multi-scale interest point detector based on the learned function.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Evaluating Predictive Uncertainty Challenge

Quinonero Candela, J., Rasmussen, C., Sinz, F., Bousquet, O., Schölkopf, B.

In Machine Learning Challenges: Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment, pages: 1-27, (Editors: J Quiñonero Candela and I Dagan and B Magnini and F d’Alché-Buc), Springer, Berlin, Germany, First PASCAL Machine Learning Challenges Workshop (MLCW), April 2006 (inproceedings)

Abstract
This Chapter presents the PASCAL Evaluating Predictive Uncertainty Challenge, introduces the contributed Chapters by the participants who obtained outstanding results, and provides a discussion with some lessons to be learnt. The Challenge was set up to evaluate the ability of Machine Learning algorithms to provide good “probabilistic predictions”, rather than just the usual “point predictions” with no measure of uncertainty, in regression and classification problems. Parti-cipants had to compete on a number of regression and classification tasks, and were evaluated by both traditional losses that only take into account point predictions and losses we proposed that evaluate the quality of the probabilistic predictions.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]