51 results
(View BibTeX file of all listed publications)

**Support Vector Machines, Support Measure Machines, and Quasar Target Selection**
Center for Cosmology and Particle Physics (CCPP), New York University, December 2012 (talk)

**Hilbert Space Embedding for Dirichlet Process Mixtures**
NIPS Workshop on Confluence between Kernel Methods and Graphical Models, December 2012 (talk)

**Simultaneous small animal PET/MR in activated and resting state reveals multiple brain networks**
20th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), May 2012 (talk)

**A new PET insert for simultaneous PET/MR small animal imaging**
20th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), May 2012 (talk)

**Evaluation of a new, large field of view, small animal PET/MR system**
50. Jahrestagung der Deutschen Gesellschaft fuer Nuklearmedizin (NuklearMedizin), April 2012 (talk)

**Expectation-Maximization methods for solving (PO)MDPs and optimal control problems**
In *Inference and Learning in Dynamic Models*, (Editors: Barber, D., Cemgil, A.T. and Chiappa, S.), Cambridge University Press, Cambridge, UK, January 2012 (inbook) In press

Muandet, K.
**Support Measure Machines for Quasar Target Selection**
Astro Imaging Workshop, 2012 (talk)

**PAC-Bayesian Analysis: A Link Between Inference and Statistical Physics
**
Workshop on Statistical Physics of Inference and Control Theory, 2012 (talk)

**PET Performance Measurements of a Next Generation Dedicated Small Animal PET/MR Scanner**
Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC), 2012 (talk)

**Inferential structure determination from NMR data**
In *Bayesian methods in structural bioinformatics*, pages: 287-312, (Editors: Hamelryck, T., Mardia, K. V. and Ferkinghoff-Borg, J.), Springer, New York, 2012 (inbook)

**Simultaneous small animal PET/MR reveals different brain networks during stimulation and rest**
World Molecular Imaging Congress (WMIC), 2012 (talk)

**Robot Learning**
In *Encyclopedia of the sciences of learning*, (Editors: Seel, N.M.), Springer, Berlin, Germany, 2012 (inbook)

**Reinforcement Learning in Robotics: A Survey**
In *Reinforcement Learning*, 12, pages: 579-610, (Editors: Wiering, M. and Otterlo, M.), Springer, Berlin, Germany, 2012 (inbook)

**PAC-Bayesian Analysis of Supervised, Unsupervised, and Reinforcement Learning
**
Tutorial at the 29th International Conference on Machine Learning (ICML), 2012 (talk)

**Influence of MR-based attenuation correction on lesions within bone and susceptibility artifact regions**
Molekulare Bildgebung (MoBi), 2012 (talk)

**Structured Apprenticeship Learning**
European Workshop on Reinforcement Learning (EWRL), 2012 (talk)

**PAC-Bayesian Analysis and Its Applications**
Tutorial at The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2012 (talk)

**Solving Nonlinear Continuous State-Action-Observation POMDPs for Mechanical Systems with Gaussian Noise
**
European Workshop on Reinforcement Learning (EWRL), 2012 (talk)

**Kernel Bellman Equations in POMDPs**
Technical Committee on Infomation-Based Induction Sciences and Machine Learning (IBISML'12), 2012 (talk)

**Higher-Order Tensors in Diffusion MRI**
In *Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data*, (Editors: Westin, C. F., Vilanova, A. and Burgeth, B.), Springer, 2012 (inbook) Accepted

**Beta oscillations propagate as traveling waves in the macaque prefrontal cortex**
42nd Annual Meeting of the Society for Neuroscience (Neuroscience), 2012 (talk)

**Machine Learning for Brain-Computer Interfaces**
Mini-Symposia on Assistive Machine Learning for People with Disabilities at NIPS (AMD), December 2009 (talk)

**PAC-Bayesian Approach to Formulation of Clustering Objectives**
NIPS Workshop on "Clustering: Science or Art? Towards Principled Approaches", December 2009 (talk)

**Semi-supervised Kernel Canonical Correlation Analysis of Human Functional Magnetic Resonance Imaging Data**
Women in Machine Learning Workshop (WiML), December 2009 (talk)

**Event-Related Potentials in Brain-Computer Interfacing**
Invited lecture on the bachelor & masters course "Introduction to Brain-Computer Interfacing", October 2009 (talk)

**BCI2000 and Python**
Invited lecture at the 5th International BCI2000 Workshop, October 2009 (talk)

**Implementing a Signal Processing Filter in BCI2000 Using C++**
Invited lecture at the 5th International BCI2000 Workshop, October 2009 (talk)

**Learning Motor Primitives for Robotics**
Advanced Telecommunications Research Center ATR, June 2009 (talk)

**Text Clustering with Mixture of von Mises-Fisher Distributions**
In *Text mining: classification, clustering, and applications*, pages: 121-161, Chapman & Hall/CRC data mining and knowledge discovery series, (Editors: Srivastava, A. N. and Sahami, M.), CRC Press, Boca Raton, FL, USA, June 2009 (inbook)

**Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer**
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), June 2009 (talk)

**Data Mining for Biologists**
In *Biological Data Mining in Protein Interaction Networks*, pages: 14-27, (Editors: Li, X. and Ng, S.-K.), Medical Information Science Reference, Hershey, PA, USA, May 2009 (inbook)

**Large Margin Methods for Part of Speech Tagging**
In *Automatic Speech and Speaker Recognition: Large Margin and Kernel Methods*, pages: 141-160, (Editors: Keshet, J. and Bengio, S.), Wiley, Hoboken, NJ, USA, January 2009 (inbook)

**Covariate shift and local learning by distribution matching**
In *Dataset Shift in Machine Learning*, pages: 131-160, (Editors: Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A. and Lawrence, N. D.), MIT Press, Cambridge, MA, USA, 2009 (inbook)

Zhou, D.
**How to learn from very few examples?**
October 2004 (talk)

Zhou, D.
**Discrete vs. Continuous: Two Sides of Machine Learning**
October 2004 (talk)

Zhou, D.
**Discrete vs. Continuous: Two Sides of Machine Learning**
October 2004 (talk)

**Grundlagen von Support Vector Maschinen und Anwendungen in der Bildverarbeitung**
September 2004 (talk)

**Kernel Methods in Computational Biology**
pages: 410, Computational Molecular Biology, MIT Press, Cambridge, MA, USA, August 2004 (book)

**Distributed Command Execution**
In *BSD Hacks: 100 industrial-strength tips & tools*, pages: 152-152, (Editors: Lavigne, Dru), O’Reilly, Beijing, May 2004 (inbook)

Bousquet, O.
**Introduction to Category Theory**
Internal Seminar, January 2004 (talk)

**Gaussian Processes in Machine Learning**
In 3176, pages: 63-71, Lecture Notes in Computer Science, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, 2004, Copyright by Springer (inbook)

**Protein Classification via Kernel Matrix Completion**
In pages: 261-274, (Editors: Schoelkopf, B., K. Tsuda and J.P. Vert), MIT Press, Cambridge, MA; USA, 2004 (inbook)

**Introduction to Statistical Learning Theory**
In Lecture Notes in Artificial Intelligence 3176, pages: 169-207, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, Germany, 2004 (inbook)

**A Primer on Kernel Methods**
In *Kernel Methods in Computational Biology*, pages: 35-70, (Editors: B Schölkopf and K Tsuda and JP Vert), MIT Press, Cambridge, MA, USA, 2004 (inbook)

**Concentration Inequalities**
In Lecture Notes in Artificial Intelligence 3176, pages: 208-240, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, Germany, 2004 (inbook)

**Kernels for graphs**
In pages: 155-170, (Editors: Schoelkopf, B., K. Tsuda and J.P. Vert), MIT Press, Cambridge, MA; USA, 2004 (inbook)

**A primer on molecular biology**
In pages: 3-34, (Editors: Schoelkopf, B., K. Tsuda and J. P. Vert), MIT Press, Cambridge, MA, USA, 2004 (inbook)

Bousquet, O.
**Advanced Statistical Learning Theory**
Machine Learning Summer School, 2004 (talk)